
April 1993 UILU-ENG-93-2213

CRHC-93-07

Center for Reliable and High-Performance Computing

OPTIMAL MESSAGE
LOG RECLAMATION
FOR INDEPENDENT
CHECKPOINTING

Yi-Min Wang and W. Kent Fuchs

(NASA-CR-192886) OPTIMAL MESSAGE N93-24749

LOG RECLAMATION FOR INDEPENDENT

CHECKPOTNTING (Illinois Univ.)

22 p Unclas

G3/62 0158563

Coordinated Scien_---Eaboratory

College of Enginee__
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited. _

b_CL_SS IFIED
SECURH'? C_SSIFI_TION OF _H_S PAGE

la. REPORT SECURITY CLASSIFICATION

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY

2b. OECLASSIFICATION I DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-93- 2213

6a. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab

University of Illinois

6c ADDRESS (Gty, State, and ZIPCode)

1308 W. Main St.

Urbana, IL 61801

"Ba, NAME OF FUNDING/SPONSORING

ORGANIZATION 7a

IIIII I III

8c. ADDRESS (City, State, and ZIP Codc)

7b

REPORT DOCUMENTATION PAGE

lbl RESTRICTIVE MARKINGS

None

3 . DISTRIBUTION / AVAILABILITY OF REPORT

Approved for public release;

distribution unlimited

S. MONITORING ORGANIZATION REPORT NUMBER(S)

CRHC 93-07

6b. OFFICE SYMBOL

(If applicable)

N/A

7a. NAME OF MONITORING ORGANIZATION

National Aeronautics and Space Adminlstratior

ICLASS and Office of Naval Research

7b. AOORESS(CJty, State, and_PCodc)

Moffett Field CA94035

Arlington VA 22217

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNDING NUMBERS
I

ELEMENT NO. .
TASK
NO.

WORK UNIT

ACCESSION NO

11. TITLE (Include Security Classification)

Optimal message Log Reclamation for Independent Checkpointing

12. PERSONAL AUTHOR(_A_NG, Yi-Min and W. Kent Fuchs

16. SUPPLEMENTARY NOTATION

17. COSATICODES 18. SUBJECT TERMS(Cominueonrever_lifmmces_ ar_lidemi_ by bl_k numbed

FIELD GROUP SUB-GROUP fault tolerance, parralel and distributed systems,

independent checkpointing,message logging, garbage collectio

!gABSTRACT(_ntioue onreve_eifnece_ and iden_ by bl_k numbed

Independent (uncoordinated) checkpointing for parallel and distributed systems allows maximum process

autonomy but suffers from possible domino effects and the associated storage space overhead for maintaining

multiple checkpoints and message logs. In most research on checkpointing and recovery it has been assumed

that only the checkpoints and message logs older than the global recovery line can be discarded. We show in

this paper how recovery line transformation and decomposition can be applied to the problem of efficiently

identifying all discardable message logs, thereby achieving optimal garbage collection. Communication trace-

driven simulation for several parallel programs is used to show the benefits of the proposed algorithm for

message log reclamation.

20. DtSTRIBUTION/AVAILABILITY OF ABSTRACT 12,.ABSTRACT SECURITY CI_'SSIFICATION '

[] UNCLASSIFIED/UNLIMITED I--I SAME AS RPT. [] DTIC USERS I Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 122b. TELEPHONE(IncIud, AreaCoo)i22c.OFFICE SYMBOL

I I

DD FORM 1473, B4 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

U_;CLASS IFIED

Optimal Message Log Reclamation for

Independent Checkpointing

Yi-Min Wang and W. Kent Fuchs

Primary contact: Yi-Min Wang

Center for Reliable and High-Performance Computing

Coordinated Science Laboratory

1308 West Main Street

University of Illinois

Urbana, IL 61801

E-mail: ymwang@crhc.uiuc.edu

Phone: (217) 244-7161

FAX: (217) 244-5686

Abstract

Independent (uncoordinated) checkpointing for parallel and distributed systems allows

maximum process autonomy but suffers from possible domino effects and the associated stor-

age space overhead for maintaining multiple checkpoints and message logs. In most research

on checkpointing and recovery it has been assumed that only the checkpoints and message

logs older than the global recovery line can be discarded. We show in this paper how re-

covery line transformation and decomposition can be applied to the problem of efficiently

identifying all discardable message logs, thereby achieving optimal garbage collection. Com-

munication trace-driven simulation for several parallel programs is used to show the benefits

of the proposed algorithm for message log reclamation.

Key words: fault tolerance, parallel and distributed systems, independent checkpointing,

message logging, garbage collection

1Acknowledgement: This research was supported in part by the National Aeronautics and Space Admin-
istration (NASA) under Grant NASA NAG 1-613, in cooperation with the Illinois Computer Laboratory for
Aerospace Systems and Software (ICLASS), and in part by the Department of the Navy and managed by
the Office of the Chief of Naval Research under Contract N00014-91-J-1283.

PREIENNG PPlGE BLANK NOT FILMED
7'

1 Introduction

Numerous checkpointing and rollback recovery techniques have been proposed in the

literature for parallel and distributed systems. They can be classified into three primary

categories. Coordinated checkpointing schemes [1-5] synchronize computation with check-

pointing by coordinating processors during a checkpointing session in order to maintain a

consistent set of checkpoints. Each processor only keeps the most recent successful check-

point and rollback propagation is avoided at the cost of potentially significant performance

degradation during normal execution. Loosely-synchronized checkpointing schemes [6-8] re-

duce the coordination overhead by taking advantage of loosely-synchronized checkpointing

clocks and by bounding the message transmission delay. Independent checkpointing schemes

[9-19] replace the checkpoint synchronization by dependency tracking and possibly message

logging in order to allow maximum process autonomy. Rollback propagation is managed by

searching for a consistent system state based on the dependency information. Process au-

tonomy during normal execution is preserved by either allowing slower recovery or assuming

a piecewise deterministic execution model [15]. Typically, each processor has to maintain

multiple checkpoints and message logs to ensure successful recovery.

This paper considers independent checkpointing schemes for nondeterministic execution

[10]. Most research on this subject has concentrated on algorithms for finding the latest

consistent set of checkpoints, i.e., the recovery line, during rollback recovery. The same

algorithms can be applied to the set of existing checkpoints during normal execution to

determine the global recovery line 2. All the checkpoints and message logs older than the

global recovery line then become obsolete and can therefore be discarded. Based on the

observation that some of the non-obsolete checkpoints can also be discarded, we previously

derived the necessary and sufficient conditions for a checkpoint to be non-discardable [20].

Let N be the number of processors, it was shown that there exists a set of N recovery lines

which contains all the checkpoints possibly useful for any future recovery. We will show in

2The global recovery line can be used for recovery when the entire system crashes. A local recovery line
is used when a subset of processors needs to roll back [9].

this paper how to identify all discardable message logs in order to further reduce the space

overhead 3 for systems with message logging in addition to checkpointing [12].

The outline of the paper is as follows. Section 2 describes the checkpointing and recovery

protocol and the technique of recovery line transformation and decomposition. Section 3

derives the necessary and sufficient conditions for identifying all discardable message logs

and the experimental evaluation is described in Section 4.

2 Checkpointing Protocol and Recovery Lines

2.1 Checkpointing and Recovery Protocol

The system model considered in this paper consists of a number of concurrent processes

for which all process communication is through message passing. Processes are assumed to

run on fail-stop processors [21] and each processor is considered as an individual recovery

unit [13]. We do not assume deterministic execution or the existence of any mechanism for

detecting and recording internal nondeterministic events [19, 22]. Consequently, if the sender

of a message is rolled back, the corresponding message log will be invalid during reexecution,

which means the receiver also has to be rolled back in order to undo the effect of the message.

During normal execution, the state of each processor is periodically saved as a checkpoint

on stable storage. Let CP_,k denote the kth checkpoint of processor pi with k > 0 and

0 < i < N - 1, where N is the number of processors. A checkpoint interval is defined to

be the time between two consecutive checkpoints on the same processor and the interval

between CPi,k and CPi,k+l is called the kth checkpoint interval. Each message is tagged

with the current checkpoint ordinal number and the processor number of the sender. Each

processor takes its checkpoint independently and updates the direct dependency information

3A simple sufficient condition based on local information exists for identifying some discardable messages

before they are logged [12]. This paper considers the necessary and sufficient conditions based on global
information for identifying all discardable logged messages.

table (or input table [10]) as follows: if at least one message from the ruth checkpoint interval

of processor pj had been processed during the previous checkpoint interval, the pair (3, m)

is added to the table entry for the new checkpoint.

A centralized garbage collection algorithm can be invoked by any processor periodically to

reduce the space overhead. First, the dependency information for all existing checkpoints is

collected to construct the checkpoint graph [9] (Fig. l(b)). The rollback propagation algorithm

[9] shown in Fig. 2 is executed on the checkpoint graph to determine the global recovery line

according to the definition of consistency described later. All the checkpoints and message

logs before the global recovery line then become obsolete and their space can therefore be

reclaimed. The same procedure can also be invoked by any processor which initiates a

rollback to determine the local recovery line. The only differences are each surviving processor

takes an additional virtual checkpoint [10] so that the dependency information during the

current checkpoint interval is also included in the checkpoint graph (called the extended

checkpoint graph [9]), and each processor will roll back to the appropriate checkpoint when

it is informed of the local recovery line.

Two situations need to be considered for checkpoint consistency. In Fig. 3(a), CPi,k and

CPj,m are inconsistent because of the orphan message [8] M_, or equivalently because CPj,m

happened before [24] CP_,k. In Fig. 3(b), the message M_ is an in-transit message, i.e.,

recorded as "sent but not yet received", with respect to the system state containing CPi,k

and CPj,,,,. It has been shown [1, 7] that checkpoints like CP_,k and CPj,,_ can be considered

consistent if Mb is logged. Pessimistic (synchronous) message logging protocols [25-27] can

ensure such a message is always properly recorded at the receiving end. This is also true for

an optimistic logging protocol if the inclusion of a new checkpoint in the checkpoint graph

is properly delayed based on the message logging progress [12]. As a result, we consider the

situation in Fig. 3(b) as consistent.

PO +

pl 4-

P2 +l!

p3 +1

4-P4

+ + + Po

A \+ ,,
P2

\ -4- P3

Obsolete checkpoints

(>

(>

0

0

#
Global recovery line

(a) (b)

Figure 1" Example checkpoint graph (a) the checkpoint and communication pattern; (b)

the corresponding checkpoint graph with each directed edge representing a happened before

relation.

/* CP stands for checkpoint. InitialIy, alI the CPs are unmarked */

include the latest CP of each processor in the root set;

mark all CPs strictIy reachable [23] from any CP in the root set;

while (at least one CP in the root set is marked) {

replace each marked CP in the root set by the latest unmarked CP on the

same processor;

mark all CPs strictly reachable from any CP in the root set;

)
the root set is the recovery line.

Figure 2: The rollback propagation algorithm.

CP i,k CP i, k

Pi + Pi +

CP j, m CP j, m

(a) (b)

Figure 3: Checkpoint consistency (a) orphan message M_; (b) in-transit message Mb.

2.2 Recovery Line Transformation and Decomposition

We define a global checkpoint as a set of N checkpoints, one from each processor. Based on

the previous description of checkpoint consistency, a consistent global checkpoint is a set of N

checkpoints, one from each processor and no two of which are related through the happened

before relation. A recovery line refers to the latest available consistent global checkpoint.

Note that being obsolete is simply a sufficient condition for being discardable. Our goal

is to derive the necessary and sufficient conditions for identifying all discardable checkpoints

and message logs. A checkpoint is non-discardable if and only if it can possibly belong to a

future recovery line, and a message log is non-discardable if and only if it can possibly become

an in-transit message with respect to a future recovery line. (For the ease of presentation,

if a message M is an in-transit message with respect to a recovery line L, we will say M

intersects L or the dependency edge corresponding to M intersects L.) The difficulty comes

from the fact that there are an infinite number of possible future recovery lines. Therefore,

our first step is to find a finite set of recovery lines, which suffices for the purpose of optimal

garbage collection.

An operational session [10] is the interval between the start of normal execution and the

instance of error recovery. Between two consecutive operational sessions is a recovery session.

The entire program execution can be viewed as consisting of several operational sessions and

recovery sessions. Within an operational session, new vertices are added to the checkpoint

graph and can not have any outgoing edges to any existing vertices 4. (If a graph G _ can

be obtained by adding new vertices to another graph G in this way, G _ is called a potential

supergraph of G.) Within a recovery session, existing vertices after the local recovery line are

removed from the checkpoint graph. The above rules for checkpoint graph evolution then

determine the possible future checkpoint graphs, and therefore the future recovery lines.

We first define a set of 2 y immediate potential supergraphs which are the supergraphs

of G and the subgraphs of G as shown in Fig. 4. G is constructed by adding an n-node ni

4Vertices with incoming edges from not-yet-collected vertices are temporarily excluded from the check-

point graph.

5

PO

Pl

P2

P3

P4

p "1
e !

_o. "5," Dn o l
U

Figure 4: The immediate potential supergraphs.

with single incoming edge at the end for each process p_. Let U denote the set of all such

n-nodes and TC£(G) denote the recovery line of a checkpoint graph G. The recovery line

transformation procedure first transforms every possible future recovery line of G backwards

in time into the recovery line of one of G's 2 Iv immediate potential supergraphs. The recovery

line decomposition procedure then further reduces this set of 2_v recovery lines {7_£(G- W) :

W _ U} to the set of N recovery lines {7_£((_ - n_) : n_ E U}. We will describe the

transformation and decomposition procedures by using the example in Fig. 5. Formal proofs

can be found in [20].

Suppose G in Fig. 5(a) is the current checkpoint graph considered for garbage collection.

Fig. 5(b) shows the extended checkpoint graph when P3 later initiates the first rollback and

Gc is the checkpoint graph immediately after the recovery. Fig. 5(d) shows another possible

extended checkpoint graph when P0 initiates a second rollback. We now describe how to

transform and decompose TC£(Ga), a typical future recovery line of G.

Transformation within an operational session: First we consider Gc and G_ where Gc

is the starting checkpoint graph of a new operational session and G_ is a potential supergraph

of Go. For checkpoints X, Y and Z which belong to 7"¢£(G_) but are not in graph Go, we

replace them by their corresponding n-nodes P, Q and R for Gc as shown in Fig. 5(g).

TC£(G_) = {A,B,X,Y,Z} is then transformed into TC£(Gg) = {A,B,P,Q,R} where Gg is

G e

Pl P II] V V /"- ',t_._._

P2 P 2 l ', (__ /_x [J_,, !--------_] n 2

I! 1

(a) (e)
Gb

po .. o io.pl '0 pl
oo..o.o'°°

P3 "X P3 l

P4 "_':)
(b) " P 4

Gc (f)
Po

Pl Poi

P2 Pl [

p4 p31 Q
,,

(c) __ Gd P4 _O_loD-_-_r _4i_R

P 2PlPO _._,.;.X ":"X "_

P4 (_-----_0-'__ :_ Z

(d)

Figure 5: Example recovery line transformation.

an immediate potential supergraph of Go.

Transformation across consecutive operational sessions: Now we consider Gg and

Gb, the last checkpoint graph of the first operational session. Of the three n-nodes P, Q and

R in 7_£:(Gg), only Q and R come from the processors which were rolled back during the

first recovery. We replace them by C and D, the corresponding checkpoints which were on

the local recovery line. 7_£:(Gg) is then transformed into _:(GI) = {A, B, P, C, D}. Notice

that G l is an immediate potential supergraph of Gb and is therefore a potential supergraph

of G. By repeatedly and alternately applying the above two transformation procedures,

every future recovery line can be transformed into another recovery line in the following set:

w): w c_u}.

Recovery line decomposition: Let rain(S) denote the set of minimal elements, i.e.,

vertices with no incoming edges, of S. By utilizing the lattice properties of the maximum-

sized antichains on a partially ordered set [24,28], each of the 2 N recovery lines can be

decomposed as:

hE(O- W) =rain(U n_(O- hi)). (1)
niEW

For example, the recovery line of G, = G- {no,ni,n3, n4} in Fig. 5(e) has the following

decomposition (refer to Fig. 6)

nL(ao) = rai_(n_(G - no) O nL(G - n,) U n_(G - n3) U nC(d - n4))

= min({A,B, n2, nz, n4, no, I, nl,J,C,D})= {A,B, n2, C,D}.

3 Message Log Reclamation

By using the techniques described in the previous section, it has been shown that the set

of all non-discardable checkpoints is equal to the union of the N recovery lines T_Z:(G - n_),

ni C U (except for the ni's) [20]. For the example shown in Fig. 6, while all the checkpoints in

G are non-obsolete, only those checkpoints corresponding to the shaded vertices in Fig. 6(f)

are non-discardable.

In addition to the checkpoints, message logs 5 constitute another storage space overhead

[12]. By following the transformation and decomposition procedures, we will show in the

following that a message log is non-discardable, i.e., can possibly intersect a future recovery

line, if and only if it intersects one of R.Z:(G - n_)'s.

3.1 Recovery Line Transformation and Decomposition

Instead of considering each individual message, we use its corresponding edge in the check-

point graph for our discussion. Let (a, b) represent the directed edge starting at vertex a

and pointing to vertex b. Clearly, (a, b) intersects a recovery line 7_/:(G) if a is on the left

hand side of _/:(G) and b is on the right hand side of RL:(G).

LEMMA 1 If(a, b) can possibly intersect a future recovery line, (a, b) must intersect _.(G-

W) for some W C U.

Sketch of the proof. Again, we use the example in Fig. 5. The edge (E, F) in G can

intersect a possible future recovery line 7_£.(Gd). We will show that (E, F) must also intersect

n£(ao).

Transformation within an operational session: First consider Go, T_£(Gg) and T_(Gd).

Any vertex of Gc which is on the left (right) hand side of T_E.(Gd) must remain on the left

(right) hand side of TC/_(Gg). Therefore, any edge of Gc intersecting T_.(Gd), for example

(E, F), must also intersect 7"¢£.(Gg) after the recovery line transformation.

Transformation across consecutive operational sessions: Now consider Go, TC/_(Gg)

and T_(GI). All vertices of Gc which are on the right hand side of T_(Gg) must remain on

the right hand side of T£_(G]) because the transformation can only push the recovery line

to the left. Those on the left hand side of T_(Gg) remain on the left hand side of TC/_(G])

_The message logs considered in this paper are used for recording the state of the channels [1] instead of

replaying for deterministic state reconstruction [13].

9

PO

Pl

P2

P3

P4

PO

Pl

P2

P3

P4

PO

Pl

P2

P3

P4

A

G-n 0

' ' PO

- 1"--_I n 3 P3

_-34 n 4 P4

(a)

G-n 2

i r ----t ..I _--_---_J

',- R - /! X : -I

il i
ii i
'1 I

[I J

I, ., ..

!.... ,i -J

PO

Pl

P2

P3

P4

(c)

G-n 4

.... fl.--.l|

A

G-n 1

I %/'\/ /' ,:L___
........ I.....,4 n2

,4 n 3

......... -....)4 n 4

(b)

G-n 3

_.1

.... -i_ n 0
_1

I

_ _ _-__-_ _n 4

(_

n o

n 1

n 2

G

Po;
I
,,

P2 ',
1

P31

P41 __ _

(e) (f)

Figure 6: Example execution of our algorithm.

10

except for G' and D. However, G' and D can not have any outgoing edges in Gc because they

were part of the local recovery line and therefore all such edges must have been removed

during the recovery. Hence, any edge of Gc intersecting _£(Gg), for example (E, F), must

also intersect 7_£(Gf) after the transformation.

Finally, we can show that (E, F) also intersects _£(G,) by again applying the transfor-

mation within an operational session. [3

LEMMA 2 rnin(U,,ew _£(G- hi)) in Eq. (I) is equivalent to the set of the N leflmost

checkpoints, one from each processor, amon9 the checkpoints in the union.

Proof. If a checkpoint v of pi is not the leftmost checkpoint of pi in the union, then v can

not be a minimal element because there exists at least one checkpoint on its left. Conversely,

if v is the leftmost checkpoint of pi, v must be in min(U,_,_w Tif..(G - n_)) because there

are only N such checkpoints and TC£(d- W) = min(U_,ew ,_)) must consist of N

checkpoints. []

LEMMA 3 If (a,b) intersects n£.(G-W) for some W C_ U, (a,b) must intersect Ti£.(G-

hi) for some ni E U.

Proof. Suppose (a,b)does not intersect any of the N recovery lines 7_£(G-n,), ni C U.

Then each of the N recovery lines must lie either entirely on the right hand side of (a, b) or

entirely on the left hand side of it.

Recovery line decomposition: Given any of the 2N recovery lines _£(G - W), W C_ U,

if all TC.£(G - ni)'s, ni E W, are entirely on the right hand side of (a, b), 7_/:(G - W) must

also lie on the right hand side of (a, b) by Eq. (1) and Lemma 2; if at least one 7_£(G - ni),

n_ E W, lies entirely on the left hand side of (a, b), _Z:(G - W) will be on the left hand

side of (a,b) again by Lemma 2. Therefore, we have shown that (a,b) can not intersect

any 7¢£(G- W) if it does not intersect any 7_£((_- n_). Conversely, if (a,b) intersects

7¢£(G- W) for some W C_ U, (a,b) must intersect T4.£(G- ni) for some ni E U. o

11

3.2 The Algorithm

We now state the necessary and sufficient conditions for a message log to be non-discardable.

THEOREM 1 A message log is non-discardable if and only if its corresponding edge in the

checkpoint graph intersects _£(G - ni) for some ni E U.

Proof. The only if part follows immediately from Lemmas 1 and 3. The if part comes

from the fact that every T_£(0 - ni) is also a possible future recovery line. []

Theorem 1 also gives the algorithm for finding all non-discardable message logs: first

compute the N recovery lines 7_£(G- hi), ni E U; only those message logs with their

corresponding edges intersecting any of the N recovery lines are non-discardable. In Fig. 6,

the edge (E,F) intersects 7¢£(G- no), (G,H) intersects Ti£(G- n4) and none of the edges

intersects T4.£(G - nl), 7"_f_.(G- n2) or T_/:(G- n3). Therefore, although all the edges in

Fig. 6(f) are non-obsolete, only those message logs corresponding to (E,F) and (G,H) need

to be retained.

There is an interesting difference between checkpoint reclamation and message log recla-

mation. While the set of non-discardable checkpoints is determined by the union of the

N recovery lines 7¢£(G - hi), ni E U, the set of non-discardable message logs is affected

by the position of each individual recovery line. Fig. 7 illustrates such a difference. The

non-discardable checkpoints a, b, c and d in Fig. 7(a) remain non-discardable in Fig. 7(5)

when e is added to the graph. However, the non-discardable message logs corresponding to

the edges (b, d) and (c, d) in Fig. 7(a) become discardable as the addition of e changes the

positions of T_/:(G- nl) and 7_/:(G- n2).

4 Experimental Results

Three hypercube programs are used to illustrate the message log reclamation capabilities

and benefits of our algorithm. They are Cell placement, Channel router and QR decomposi-

tion, running on an 8-node Intel iPSC/2 hypercube. Communication traces are collected by

12

A

RL(G-n i)

P O ,, _,:) P O

Pl i Pl

P2 P2
I

^ __/
(a) RJ.,(G - n 2)

Figure 7: The difference between the reclamation of checkpoints and message logs.

intercepting the "send" and "receive" system calls. Communication trace-driven simulation

is then performed to obtain the results. The execution time for each program is listed in

Table 1. The checkpoint interval is arbitrarily chosen to be approximately one tenth of the

execution time.

Table 1: Execution time and checkpoint interval.

Programs

Execution time (sec)

Checkpoint interval (sec)

Cell placement Channel router QR decomposition

324 469 370

35 40 35

Figs. 8-10 compare our algorithm with the traditional garbage collection algorithm for

the three programs in terms of the number and size of the retained message logs. Each curve

shows the remaining space overhead after garbage collection if the algorithm is invoked after

a certain number of checkpoints have been taken. Since the checkpointing clocks on all nodes

are approximately synchronized, checkpoints #8n through #8(n+l)-i are taken at about

the same time, which explains the fact that the number of messages is almost constant within

that interval.

The domino effect is illustrated by the constant increase in the number of non-obsolete

message logs as the total number of checkpoints increases, for example, between checkpoints

13

#40 and #64 in Fig. S(a) and between checkpoints #48 and #88 in Fig. 9(a). The figures

show that our algorithm performs consistently better than the traditional algorithm and is

particularly effective when the domino effect persists.

5 Concluding Remarks

We have shown that some of the non-obsolete message logs in an independent check-

pointing protocol can be discarded because they can never be useful for any possible future

recovery. An algorithm was developed for finding all discardabte message logs in order to

minimize the space overhead. Communication trace-driven simulation results for three hy-

percube programs showed that the algorithm can be effective in reducing the message log

space overhead for real applications.

Acknowledgement

The authors wish to express their sincere thanks to Pi-Yu Chung for her valuable discus-

sions, to Junsheng Long for his help with the experimental results and to Prith Banerjee for

his hypercube programs.

References

[1] K. M. Chandy and L. Lamport, "Distributed snapshots: Determining global states of dis-

tributed systems," ACM Trans. on Computer Systems, vol. 3, pp. 63-75, Feb. 1985.

[2] T. H. Lai and T. H. Yang, "On distributed snapshots," Information Processing Letters, vol. 25,

pp. 153-158, May 1987.

[3] P_. Koo and S. Toueg, "Checkpointing and rollback-recovery for distributed systems," IEEE

Trans. on Software Engineering, vol. SE-13, pp. 23-31, Jan. 1987.

[4] K. Li, J. F. Naughton, and J. S. Plank, "Checkpointing multicomputer applications," in Proc.

IEEE Syrup. on Reliable Distr. Syst., pp. 2-11, 1991.

14

o 100000

80000
¢/1

60000

4oooo

o 20000

0
Z

,.Q 6

_, 5
exO
0

4
ell
el

_, 3

2

0
0

NI
°_,,_

I I I I I I

Non-obsolete
Non-discardable -+---

I

0 8 16 24 32 40

I I

48 56 64 72

Number of checkpoints taken

(a)

_I I I I

Non-obsolete
Non-discardable -÷---

I I I

40 48 56

B

|
I

0 8 16 24 32 64 72

Number of checkpoints taken

(u)

Figure 8: Message log reclamation for the Cell placement program.

15

exo

o 140000
©

_z 120000

_ 100000

"_ 800000

•_ 60000
_. 40000
0

_ 20000

o
Z

2.5

_ 2
0

1.5

_. 1

•_ 0.5

_ 0
0

bl

r_

I I I I I I I I I I

0 8 16 24 32 40 48 56 64 72 80 88

Number of checkpoints taken

(a)

0

I I I I I I I I I I

Non-obsolete _ __.

Non-discardable -+---

8 16 24 32 40 48 56 64 72 80 88

Number of checkpoints taken

(b)

Figure 9: Message log reclamation for the Channel router program.

16

et0
o 24000
o

2oooo

16000

12000
_

80O0

o

4000

o
Z

80
70

o
- 60
o

50

4O
._ 30

20
"_ 10

_- 0
o

N

r/l

\
I

q

I I I I

Non-obsolete
Non-discardab]e -÷---

|
| I

I
t

I

I I I I I

7
4-

I
t
t
t
t
1

I

|
I
I

I
t
I

I
I

I
t

t

I
I
t
t

I
S

I

I
I

1+
I

I

"r
L

b

_r

0 8 16 24 32 40 48 56 64 72 80

Number of checkpoints taken

(a)

I I I I

Non-obsolete
Non-discardable -+---

I I I I I

\ '
o

_t

I

16

I

_r
|
t
I
|
I

"r
I
I

I
i

o

1
I

I
I

|

-I

_r
I
I

I
I
t

_r

"v

-7

r

0 8 24 32 40 48 56 64 72 80

Number of checkpoints taken

(b)

Figure 10: Message log reclamation for the QR decomposition program.

17

[5] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, "The performance of consistent check-

pointing," in Proc. IEEE Syrup. on Reliable Distr. Syst., pp. 39-47, Oct. 1992.

[6] P. Ramanathan and K. G. Shin, "Checkpointing and rollback recovery in a distributed system

using common time base," in Proc. IEEE Syrup. on Reliable Distr. Syst., pp. 13-21, 1988.

[7] F. Cristian and F. Jahanian, "A timestamp-based checkpointing protocol for long-lived dis-

tributed computations," in Proc. IEEE Syrup. on Reliable Distr. Syst., pp. 12-20, 1991.

[8] Z. Tong, R. Y. Kain, and W. T. Tsai, "Rollback recovery in distributed systems using loosely

synchronized clocks," IEEE Trans. on Parallel and Distributed Systems, vol. 3, pp. 246-251,

Mar. 1992.

[9] K. Tsuruoka, A. Kaneko, and Y. Nishihara, "Dynamic recovery schemes for distributed pro-

cesses," in Proc. IEEE 2nd Syrup. on Reliability in Distributed Software and Database Systems,

pp. 124-130, 1981.

[10] B. Bhargava and S. 1_. Lian, "Independent checkpointing and concurrent rollback for recovery

- An optimistic approach," in Proc. IEEE Syrup. on Reliable Distr. Syst., pp. 3-12, 1988.

[11] Y. M. Wang and W. K. Fuchs, "Scheduling message processing for reducing rollback propaga-

tion," in Proc. IEEE Fault-Tolerant Computing Symposium, pp. 204-211, July 1992.

[12] Y. M. Wang and W. K. Fuchs, "Optimistic message logging for independent checkpointing in

message-passing systems," in Proc. IEEE Syrup. on Reliable Distr. Syst., pp. 147-154, Oct.

1992.

[13] R. E. Strom and S. Yemini, "Optimistic recovery in distributed systems," ACM Trans. on

Computer Systems, vol. 3, pp. 204-226, Aug. 1985.

[14] D. B. Johnson and W. Zwaenepoel, "Sender-based message logging," in Proc. IEEE Fault-

Tolerant Computing Symposium, pp. 14-19, 1987.

[15] R. E. Strom, D. F. Bacon, and S. A. Yemini, "Volatile logging in n-fault-tolerant distributed

systems," in Proc. IEEE Fault-Tolerant Computing Symposium, pp. 44-49, 1988.

[16] D. B. Johnson and W. Zwaenepoet, "Recovery in distributed systems using optimistic message

logging and checkpointing," J. of Algorithms, vol. 11, pp. 462-491, 1990.

[17] A. P. $istla and J. L. Welch, "Efficient distributed recovery using message logging," in Proc.

8th A CM Symposium on Principles of Distributed Computing, pp. 223-238, 1989.

[18] T. T.-Y. Juang and S. Venkatesan, "Crash recovery with little overhead," in Proc. IEEE Int'l

Conf. on Distributed Computing Systems, pp. 454-461, 1991.

[19] E. N. Elnozahy and W. Zwaenepoel, "Manetho: Transparent rollback-recovery with low over-
head, limited rollback and fast output commit," IEEE Trans. on Computers, vol. 41, pp. 526-

531, May 1992.

18

[2o]

[21]

[22]

[23]

[241

[25]

[26]

[27]

Y. M. Wang, P. Y. Chung, I. J. Lin, and W. K. Fuchs, "Checkpoint space reclamation for

independent checkpointing in message-passing systems," Tech. Rep. CRHC-92-06, Coordinated

Science Laboratory, University of Illinois at Urbana-Champaign, 1992.

E. D. Schlichting and F. B. Schneider, "Fail-stop processors: An approach to designing fault-

tolerant computing systems," ACM Trans. on Computer Systems, vol. 1, pp. 222-238, Aug.
1983.

D. B. Johnson and W. Zwaenepoel, "Transparent optimistic rollback recovery," A CM Operat-

ing Systems Review, pp. 99-102, Apr. 1991.

K. P. Bogart, Introductory combinatorics. Pitman Publishing Inc., Massachusetts, 1983.

L. Lamport, "Time, clocks and the ordering of events in a distributed system," Comm. of the

ACM, vol. 21, pp. 558-565, July 1978.

M. L. Powell and D. L. Presotto, "Publishing: A reliable broadcast communication mecha-

nism," in Proc. 9th ACM Syrup. on Operating Systems Principles, pp. 100-109, 1983.

A. Borg, J. Baumbach, and S. Glazer, "A message system supporting fault-tolerance," in Proc.

9th A CM Syrup. on Operating Systems Principles, pp. 90-99, 1983.

A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle, "Fault tolerance under UNIX,"

ACM Trans. on Computer Systems, vol. 7, pp. 1-24, Feb. 1989.

[28] I. Anderson, Combinatorics of finite sets. Clarendon Press, Oxford, 1987.

19

